Domain 0510.de kaufen?

Produkt zum Begriff Data Analytics:


  • Getting Started with Data Science: Making Sense of Data with Analytics
    Getting Started with Data Science: Making Sense of Data with Analytics

    Master Data Analytics Hands-On by Solving Fascinating Problems You’ll Actually Enjoy!Harvard Business Review recently called data science “The Sexiest Job of the 21st Century.” It’s not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it’s indispensable. Unfortunately, there’s been nothing easy about learning data science–until now.Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell’s Outliers: It teaches through a powerful narrative packed with unforgettable stories.Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything’s software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you’ll always know why you’re doing what you’re doing.You’ll master data science by answering fascinating questions, such as:• Are religious individuals more or less likely to have extramarital affairs?• Do attractive professors get better teaching evaluations?• Does the higher price of cigarettes deter smoking?• What determines housing prices more: lot size or the number of bedrooms?• How do teenagers and older people differ in the way they use social media?• Who is more likely to use online dating services?• Why do some purchase iPhones and others Blackberry devices?• Does the presence of children influence a family’s spending on alcohol?For each problem, you’ll walk through defining your question and the answers you’ll need; exploring howothers have approached similar challenges; selecting your data and methods; generating your statistics;organizing your report; and telling your story. Throughout, the focus is squarely on what matters most:transforming data into insights that are clear, accurate, and can be acted upon.

    Preis: 18.18 € | Versand*: 0 €
  • Predictive Analytics: Data Mining, Machine Learning and Data Science for Practitioners
    Predictive Analytics: Data Mining, Machine Learning and Data Science for Practitioners

    Use Predictive Analytics to Uncover Hidden Patterns and Correlations and Improve Decision-MakingUsing predictive analytics techniques, decision-makers can uncover hidden patterns and correlations in their data and leverage these insights to improve many key business decisions. In this thoroughly updated guide, Dr. Dursun Delen illuminates state-of-the-art best practices for predictive analytics for both business professionals and students. Delen's holistic approach covers key data mining processes and methods, relevant data management techniques, tools and metrics, advanced text and web mining, big data integration, and much more. Balancing theory and practice, Delen presents intuitive conceptual illustrations, realistic example problems, and real-world case studiesincluding lessons from failed projects. It's all designed to help you gain a practical understanding you can apply for profit.* Leverage knowledge extracted via data mining to make smarter decisions* Use standardized processes and workflows to make more trustworthy predictions* Predict discrete outcomes (via classification), numeric values (via regression), and changes over time (via time-series forecasting)* Understand predictive algorithms drawn from traditional statistics and advanced machine learning* Discover cutting-edge techniques, and explore advanced applications ranging from sentiment analysis to fraud detection

    Preis: 37.44 € | Versand*: 0 €
  • Data Analytics for IT Networks: Developing Innovative Use Cases
    Data Analytics for IT Networks: Developing Innovative Use Cases

    Use data analytics to drive innovation and value throughout your network infrastructureNetwork and IT professionals capture immense amounts of data from their networks. Buried in this data are multiple opportunities to solve and avoid problems, strengthen security, and improve network performance. To achieve these goals, IT networking experts need a solid understanding of data science, and data scientists need a firm grasp of modern networking concepts. Data Analytics for IT Networks fills these knowledge gaps, allowing both groups to drive unprecedented value from telemetry, event analytics, network infrastructure metadata, and other network data sources. Drawing on his pioneering experience applying data science to large-scale Cisco networks, John Garrett introduces the specific data science methodologies and algorithms network and IT professionals need, and helps data scientists understand contemporary network technologies, applications, and data sources.After establishing this shared understanding, Garrett shows how to uncover innovative use cases that integrate data science algorithms with network data. He concludes with several hands-on, Python-based case studies reflecting Cisco Customer Experience (CX) engineers’ supporting its largest customers. These are designed to serve as templates for developing custom solutions ranging from advanced troubleshooting to service assurance.Understand the data analytics landscape and its opportunities in Networking See how elements of an analytics solution come together in the practical use casesExplore and access network data sources, and choose the right data for your problemInnovate more successfully by understanding mental models and cognitive biasesWalk through common analytics use cases from many industries, and adapt them to your environmentUncover new data science use cases for optimizing large networksMaster proven algorithms, models, and methodologies for solving network problemsAdapt use cases built with traditional statistical methodsUse data science to improve network infrastructure analysisAnalyze control and data planes with greater sophisticationFully leverage your existing Cisco tools to collect, analyze, and visualize data

    Preis: 43.86 € | Versand*: 0 €
  • Business Intelligence, Analytics, Data Science, and AI, Global Edition
    Business Intelligence, Analytics, Data Science, and AI, Global Edition

    Business Intelligence, Analytics, Data Science, and AI is your guide to the business-related impact of artificial intelligence, data science and analytics, designed to prepare you for a managerial role. The text's vignettes and cases feature modern companies and non-profit organizations and illustrate capabilities, costs and justifications of BI across various business units. With coverage of many data science/AI applications, you'll explore tools, then learn from various organizations' experiences employing such applications. Ample hands-on practice is provided, can be completed with a range of software, and will help you use analytics as a future manager. The 5th Edition integrates the fully updated content of Analytics, Data Science, and Artificial Intelligence, 11/e and Business Intelligence, Analytics, and Data Science, 4/e into one textbook, strengthened by 4 new chapters that will equip you for today's analytics and AI tech, such as ChatGPT. Examples explore analytics in sports, gaming, agriculture and data for good.

    Preis: 81.32 € | Versand*: 0 €
  • Welche Förderungsmaßnahme gibt es für Data Analysts bzw. Data Scientists?

    Es gibt verschiedene Förderungsmaßnahmen für Data Analysts und Data Scientists, je nach Land und Organisation. Zum Beispiel bieten Universitäten und Forschungseinrichtungen Stipendien und Forschungsprojekte an. Unternehmen können auch Weiterbildungsprogramme und Schulungen für ihre Mitarbeiter anbieten. Darüber hinaus gibt es auch staatliche Förderprogramme und Stipendien für Studierende und Forscher in diesem Bereich.

  • Was ist Big Data?

    Big Data bezieht sich auf große Mengen an Daten, die mit hoher Geschwindigkeit und Vielfalt generiert werden. Diese Daten können aus verschiedenen Quellen stammen, wie zum Beispiel sozialen Medien, Sensoren oder Transaktionen. Big Data ermöglicht es Unternehmen, Muster und Trends zu identifizieren, um fundierte Entscheidungen zu treffen und ihre Geschäftsprozesse zu optimieren.

  • Wie werde ich Data Analyst?

    Um Data Analyst zu werden, solltest du zunächst eine solide Grundlage in Mathematik, Statistik und Informatik haben. Es ist auch hilfreich, Programmiersprachen wie Python oder R zu beherrschen. Praktische Erfahrung durch Praktika oder Projekte kann ebenfalls von Vorteil sein. Darüber hinaus ist es wichtig, kontinuierlich über neue Entwicklungen in der Datenanalyse auf dem Laufenden zu bleiben und sich gegebenenfalls weiterzubilden.

  • Was macht ein Data Scientist?

    Ein Data Scientist ist für die Analyse großer Mengen von Daten verantwortlich, um wertvolle Erkenntnisse und Muster zu identifizieren. Sie entwickeln und implementieren Algorithmen und Modelle, um Prognosen und Trends vorherzusagen. Data Scientists verwenden verschiedene Programmiersprachen und Tools, um Daten zu sammeln, zu bereinigen und zu visualisieren. Sie arbeiten eng mit anderen Teams zusammen, um datengesteuerte Entscheidungen zu treffen und Geschäftsziele zu erreichen. Insgesamt ist ein Data Scientist dafür verantwortlich, Daten in verwertbare Informationen umzuwandeln und so einen Mehrwert für das Unternehmen zu schaffen.

Ähnliche Suchbegriffe für Data Analytics:


  • Visual Analytics Fundamentals: Creating Compelling Data Narratives with Tableau
    Visual Analytics Fundamentals: Creating Compelling Data Narratives with Tableau

    Master the Fundamentals of Modern Visual Analytics--and Craft Compelling Visual Narratives in Tableau!   Do you need to persuade or inform people? Do you have data? Then you need to master visual analytics and visual storytelling. Today, the #1 tool for telling visual stories with data is Tableau, and demand for Tableau skills is soaring. In Visual Analytics Fundamentals, renowned visual storyteller and analytics professor Lindy Ryan introduces all the fundamental visual analytics knowledge, cognitive and perceptual concepts, and hands-on Tableau techniques you'll need.   Ryan puts core analytics and visual concepts upfront, so you'll always know exactly what you're trying to accomplish and can apply this knowledge with any tool. Building on this foundation, she presents classroom-proven guided exercises for translating ideas into reality with Tableau 2022. You'll learn how to organize data and structure analysis with stories in mind, embrace exploration and visual discovery, and articulate your findings with rich data, well-curated visualizations, and skillfully crafted narrative frameworks. Ryan's insider tips take you far beyond the basics--and you'll rely on her expert checklists for years to come.   Communicate more powerfully by applying scientific knowledge of the human brain Get started with the Tableau platform and Tableau Desktop 2022 Connect data and quickly prepare it for analysis Ask questions that help you keep data firmly in context Choose the right charts, graphs, and maps for each project--and avoid the wrong ones Craft storyboards that reflect your message and audience Direct attention to what matters most Build data dashboards that guide people towards meaningful outcomes Master advanced visualizations, including timelines, Likert scales, and lollipop charts   This book has only one prerequisite: your desire to communicate insights from data in ways that are memorable and actionable. It's for executives and professionals sharing important results, students writing reports or presentations, teachers cultivating data literacy, journalists making sense of complex trends. . . . practically everyone! Don't even have Tableau? Download your free trial of Tableau Desktop and let's get started!

    Preis: 47.07 € | Versand*: 0 €
  • Real-World Data Mining: Applied Business Analytics and Decision Making
    Real-World Data Mining: Applied Business Analytics and Decision Making

    Use the latest data mining best practices to enable timely, actionable, evidence-based decision making throughout your organization! Real-World Data Mining demystifies current best practices, showing how to use data mining to uncover hidden patterns and correlations, and leverage these to improve all aspects of business performance.   Drawing on extensive experience as a researcher, practitioner, and instructor, Dr. Dursun Delen delivers an optimal balance of concepts, techniques and applications. Without compromising either simplicity or clarity, he provides enough technical depth to help readers truly understand how data mining technologies work. Coverage includes: processes, methods, techniques, tools, and metrics; the role and management of data; text and web mining; sentiment analysis; and Big Data integration. Throughout, Delen's conceptual coverage is complemented with application case studies (examples of both successes and failures), as well as simple, hands-on tutorials.  Real-World Data Mining will be valuable to professionals on analytics teams; professionals seeking certification in the field; and undergraduate or graduate students in any analytics program: concentrations, certificate-based, or degree-based.

    Preis: 48.14 € | Versand*: 0 €
  • Enterprise Analytics: Optimize Performance, Process, and Decisions Through Big Data
    Enterprise Analytics: Optimize Performance, Process, and Decisions Through Big Data

    The Definitive Guide to Enterprise-Level Analytics Strategy, Technology, Implementation, and Management Organizations are capturing exponentially larger amounts of data than ever, and now they have to figure out what to do with it. Using analytics, you can harness this data, discover hidden patterns, and use this knowledge to act meaningfully for competitive advantage. Suddenly, you can go beyond understanding “how, when, and where” events have occurred, to understand why – and use this knowledge to reshape the future. Now, analytics pioneer Tom Davenport and the world-renowned experts at the International Institute for Analytics (IIA) have brought together the latest techniques, best practices, and research on analytics in a single primer for maximizing the value of enterprise data. Enterprise Analytics is today’s definitive guide to analytics strategy, planning, organization, implementation, and usage. It covers everything from building better analytics organizations to gathering data; implementing predictive analytics to linking analysis with organizational performance. The authors offer specific insights for optimizing supply chains, online services, marketing, fraud detection, and many other business functions. They support their powerful techniques with many real-world examples, including chapter-length case studies from healthcare, retail, and financial services. Enterprise Analytics will be an invaluable resource for every business and technical professional who wants to make better data-driven decisions: operations, supply chain, and product managers; product, financial, and marketing analysts; CIOs and other IT leaders; data, web, and data warehouse specialists, and many others.

    Preis: 22.46 € | Versand*: 0 €
  • Getting Started with Data Science: Making Sense of Data with Analytics
    Getting Started with Data Science: Making Sense of Data with Analytics

    Harvard Business Review recently called data science "The Sexiest Job of the 21st Century." It's not just sexy: for millions of managers and students who need to solve business problems with big data, it's indispensable. Unfortunately, there's been nothing sexy about learning data science -- until now.   Getting Started with Data Science takes its approach from worldwide best-sellers like Freakonomics and the books of Malcolm Gladwell: it teaches through a powerful narrative packed with unforgettable stories.   Murtaza Haider offers careful, jargon-free coverage of basic theory and technique, backed with plenty of clear examples and practice opportunities. Everything's software and platform independent, so you can learn what you need whether you work with R, Stata, SPSS, SAS, or another toolset.   Best of all, Haider teaches a crucial skillset most academic data science books ignore: how to transform data into narratives, graphics, and tables that make it vivid and actionable.  For each problem, you'll walk through identifying the right data and methods, creating summary statistics, describing and visualizing findings, and seeing how others have handled the challenge. In advanced chapters, you'll also learn sophisticated statistical modeling techniques. Throughout, the focus is on data: finding it, using it, and powerfully communicating its meaning.

    Preis: 24.6 € | Versand*: 0 €
  • Was ist eine Big Data Analyse?

    Was ist eine Big Data Analyse? Eine Big Data Analyse bezieht sich auf die Untersuchung und Auswertung von großen und komplexen Datensätzen, um wertvolle Erkenntnisse und Muster zu gewinnen. Durch den Einsatz von fortschrittlichen Analysetechniken wie Data Mining, maschinellem Lernen und künstlicher Intelligenz können Unternehmen Trends identifizieren, Vorhersagen treffen und fundierte Entscheidungen treffen. Diese Analyse ermöglicht es Organisationen, ihre Geschäftsprozesse zu optimieren, Kundenverhalten zu verstehen und Wettbewerbsvorteile zu erlangen. Letztendlich hilft eine Big Data Analyse Unternehmen dabei, datengesteuerte Strategien zu entwickeln und ihre Leistung zu verbessern.

  • Welche Nachteile gibt es bei Big Data?

    Ein Nachteil von Big Data ist die mögliche Verletzung der Privatsphäre. Durch die Sammlung und Analyse großer Datenmengen können persönliche Informationen offengelegt werden, was zu Missbrauch und Datenschutzverletzungen führen kann. Ein weiterer Nachteil ist die Komplexität der Datenanalyse, da große Datenmengen oft unstrukturiert und heterogen sind, was die Identifizierung von relevanten Informationen erschwert. Zudem besteht die Gefahr von Fehlinterpretationen und falschen Schlussfolgerungen aufgrund von Verzerrungen oder unvollständigen Daten.

  • Wie viel verdient ein Data Scientist?

    Wie viel ein Data Scientist verdient, hängt von verschiedenen Faktoren ab, wie zum Beispiel der Erfahrung, dem Standort, der Branche und der Unternehmensgröße. In den USA liegt das durchschnittliche Gehalt für Data Scientists bei etwa 120.000 bis 140.000 US-Dollar pro Jahr. In Europa kann das Gehalt je nach Land und Unternehmen variieren, aber in der Regel verdienen Data Scientists auch hier sehr gut. Es ist wichtig zu beachten, dass sich die Gehälter ständig ändern und von vielen Faktoren abhängen. Es lohnt sich, sich über aktuelle Gehaltsinformationen in der Branche zu informieren.

  • Wie installiert man Data Packs in Minecraft?

    Um Data Packs in Minecraft zu installieren, musst du zuerst sicherstellen, dass du die richtige Version des Spiels verwendest. Dann musst du den Data Pack herunterladen und in den Ordner "datapacks" deiner Minecraft-Welt kopieren. Starte das Spiel und öffne deine Welt, um das Data Pack zu aktivieren.

* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.